比例微积分算法

比例微积分(Proportional-Integral-Derivative,简称PID)算法是一种常用的控制算法,它用于计算控制器的输出,以使得系统的输出能够尽可能地跟踪期望的目标值。PID控制器基于系统的误差(目标值与当前值的差)来计算控制量,并将控制量应用到系统上,以调整系统的行为。

下面是一个简单的PID算法的C语言实现:

#include <stdio.h>

// PID控制器结构体
typedef struct {
    double Kp; // 比例系数
    double Ki; // 积分系数
    double Kd; // 微分系数

    double previous_error; // 上一次误差
    double integral; // 误差的积分
} PIDController;

// PID初始化
void PID_Init(PIDController *pid, double Kp, double Ki, double Kd) {
    pid->Kp = Kp;
    pid->Ki = Ki;
    pid->Kd = Kd;
    pid->previous_error = 0.0;
    pid->integral = 0.0;
}

// PID计算函数
double PID_Compute(PIDController *pid, double setpoint, double actual_value, double dt) {
    double error = setpoint - actual_value; // 计算误差
    
    // 积分项
    pid->integral += error * dt;
    
    // 微分项
    double derivative = (error - pid->previous_error) / dt;
    
    // 计算输出
    double output = pid->Kp * error + pid->Ki * pid->integral + pid->Kd * derivative;
    
    // 更新误差
    pid->previous_error = error;
    
    return output;
}

int main() {
    // 初始化PID控制器
    PIDController myPID;
    PID_Init(&myPID, 1.0, 0.1, 0.01); // 这些系数需要根据实际系统调整

    double setpoint = 100.0; // 目标值
    double actual_value = 0.0; // 当前值(假设初始值为0)
    double dt = 0.1; // 时间间隔(例如:100ms)

    // 模拟控制过程
    for (int i = 0; i < 100; i++) {
        double output = PID_Compute(&myPID, setpoint, actual_value, dt);
        
        // 假设output直接作用于系统,调整actual_value(实际值)
        actual_value += output; // 在实际应用中,output可能需要通过某种方式作用于系统
        
        printf("Setpoint: %f, Actual Value: %f, Output: %f\n", setpoint, actual_value, output);
    }

    return 0;
}

这个简单的示例展示了如何定义一个PID控制器,并在循环中计算控制输出。在这个例子中,setpoint 是期望的目标值,actual_value 是系统的当前值,dt 是两次计算之间的时间间隔。PID_Compute 函数根据这些输入和PID控制器的参数计算出一个输出值,这个输出值可以用于控制系统,使得系统的输出接近目标值。

请注意,实际的PID控制器实现可能需要考虑更多的因素,比如积分饱和防止积分溢出,微分项的滤波以避免噪声放大,以及根据具体的应用场景调整PID参数(Kp, Ki, Kd)。此外,PID控制算法也可能需要与其他控制策略结合使用,以实现更复杂的控制需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/560194.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

美业连锁门店收银系统源码-如何查看收款门店对应的加盟商?

美业管理系统源码 博弈美业SaaS系统 连锁多门店美业收银系统源码 多门店管理 / 会员管理 / 预约管理 / 排班管理 / 商品管理 / 促销活动 PC管理后台、手机APP、iPad APP、微信小程序 第一步&#xff1a; 登录pc管理后端 第二步&#xff1a; 进入企业组织管理-门店管理&a…

【Linux】认识文件(一):文件标识符

【Linux】认识文件&#xff08;一&#xff09;&#xff1a;文件标识符 一.什么是文件&#xff1f;1.文件的本质2.文件的分类 二.访问文件操作1.C语言中的访问文件接口i.fopenii.fcloseiii.fwrite 2.系统访问文件接口i.openii.closeiii.write 三.文件管理1.对所有打开文件的管理…

Linux入门学习 之 基础操作指令讲解(小白必看)

股票的规律找到了&#xff0c;不是涨就是跌 一、Linux下基本指令 1.ls 指令 2.pwd 命令 3.cd 指令 4.touch 指令 5.mkdir 指令 6.rmdir指令 && rm 指令 7.man 指令 8.cp 指令 9.mv指令 10.cat 11.more 指令 12.less 指令 13.head 指令 14.tail 指令 15…

SQLite作为应用程序文件格式(二十八)

返回&#xff1a;SQLite—系列文章目录 上一篇:SQLite数据库中JSON 函数和运算符(二十七) 下一篇&#xff1a;SQLite—系列文章目录 摘要 具有定义架构的 SQLite 数据库文件 通常是一种出色的应用程序文件格式。 以下是十几个原因&#xff1a; 简化的应用程序开发单文…

BUUCTF-MISC01金胖

题目&#xff1a;动图使用Stegsolve软件进行逐帧查看 下载文件后&#xff0c;图片隐写之gif多帧隐藏&#xff0c;这类题比较简单&#xff0c;只需要将图片使用Stegsolve软件进行逐帧查看就行了.file-open打开添加文件 将文件添加进来&#xff0c;而后点击Analyse-Frame Browse…

windows和linux服务器等保测评加固方法

服务器加固是通过各种方法增强服务器安全性的过程。保护操作系统免受黑客、破解者和攻击者的侵害。网络安全防护的目标是保密性、完整性、可用性、可控制性、不可否认性。 一、window服务器等保加固 以win2012和win2008 为例&#xff1a; &#xff08;win2008&#xff09; …

畅游网络:构建C++网络爬虫的指南

概述 随着信息时代的来临&#xff0c;网络爬虫技术成为数据采集和网络分析的重要工具。本文旨在探讨如何运用C语言及其强大的cpprestsdk库构建一个高效的网络爬虫&#xff0c;以便捕捉知乎等热点信息。为了应对IP限制的挑战&#xff0c;我们将引入亿牛云爬虫代理服务&#xff…

Spring 事务失效总结

前言 在使用spring过程中事务是被经常用的&#xff0c;如果不小心或者认识不做&#xff0c;事务可能会失效。下面列举几条 业务代码没有被Spring 容器管理 看下面图片类没有Componet 或者Service 注解。 方法不是public的 Transactional 注解只能用户public上&#xff0c…

使用Python+opencv实现自动扫雷

大家好&#xff0c;相信许多人很早就知道有扫雷这么一款经典的游戏&#xff0c;更是有不少人曾听说过中国雷圣&#xff0c;也是中国扫雷第一、世界综合排名第二的郭蔚嘉的顶顶大名。扫雷作为一款在Windows9x时代就已经诞生的经典游戏&#xff0c;从过去到现在依然都有着它独特的…

吴恩达机器学习笔记 三十五 异常检测与监督学习

什么时候选择异常检测&#xff1f; 正样本 ( y 1 ) 的数量非常少 负样本 ( y 0 ) 的数量非常多 有很多不同的异常&#xff0c;现有的算法不能从正样本中得知什么是异常&#xff0c;或未来可能出现完全没见过的异常情况。 例如金融欺诈&#xff0c;隔几个月或几年就有新的…

OpenHarmony实战开发-搜索功能实现案例、如何使用includes方法对数据实现模糊查询

介绍 本示例介绍使用includes方法对数据实现模糊查询 效果图预览 使用说明 点击首页搜索框跳转到搜索页面在搜索页面输入框中输入搜索的内容&#xff0c;下方列表自动根据搜索的内容进行筛选渲染点击筛选后的列表跳转到相应的页面跳转后会保存搜索历史&#xff0c;搜索历史使…

深度解析 Spring 源码:三级缓存机制探究

文章目录 一、 三级缓存的概述二、 三级缓存的实现原理2.1 创建Bean流程图2.2 getBean()2.3 doGetBean()2.4 createBean()2.5 doCreateBean()2.4 getSingleton() 三、 三级缓存的使用场景与注意事项3.1 在实际开发中如何使用三级缓存3.2 三级缓存可能出现的问题及解决方法 一、…

特征值eigenvalue与特征向量eigenvector

特征值&#xff0c;特征向量概念 在线性代数中&#xff0c;对于一个给定的线性变换A&#xff0c;他的特征向量v经过这个线性变换的作用之后&#xff0c;得到的新向量仍然与原来的 v v v保持在同一条直线上。但长度或方向也许会改变。即&#xff1a; A v Av Av λ v \lambda…

Android开发——Fragment

Demo fragment_blank.xml <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_pare…

Java Web3-2 - tomcat

https://github.com/heibaiying/Full-Stack-Notes/blob/master/notes/Tomcat_架构解析.md https://zhuanlan.zhihu.com/p/40249834 早期&#xff0c;web技术主要用于浏览静态页面 时间发展&#xff0c;用户已经不满足于仅浏览静态页面。用户需要一些交互操作&#xff0c;获取…

追溯历史:SIEM 中的生成式人工智能革命

作者&#xff1a;来自 Elastic Mike Nichols, Mike Paquette 网络安全领域仿佛是现实世界的一个映射&#xff0c;安全运营中心&#xff08;security operation center - SOC&#xff09;就像是你的数字警察局。网络安全分析师就像是警察&#xff0c;他们的工作是阻止网络犯罪分…

【Web】DASCTF X GFCTF 2024|四月开启第一局 题解

目录 EasySignin cool_index web1234 web4打破防了&#x1f92e;&#xff0c;应该很接近解出来了&#xff0c;感兴趣的师傅续上吧 EasySignin 先随便注册个账号登录&#xff0c;然后拿bp抓包改密码(username改成admin) 然后admin / 1234567登录 康好康的图片功能可以打SS…

ros仿真启动小龟

1.启动RosMaster&#xff08;管理Ros中各个节点的“大管家”&#xff0c;每次启动Ros时需要首先启动RosMaster&#xff09; roscorefangfang-inspiron-5580:~/ros2/download/rosdistro$ roscore ... logging to /home/fang/.ros/log/6ec2d790-fe1d-11ee-aba8-1c1bb5cdec7c/ros…

MySQL-实验-单表、多表数据查询和嵌套查询

目录 0.简单子查询 &#xff08;1&#xff09;带比较运算符的子查询 &#xff08;2&#xff09;关键字子查询 1.多表查询 3.子查询 4.多表子查询 0.简单子查询 &#xff08;1&#xff09;带比较运算符的子查询 在右侧编辑器补充代码&#xff0c;查询大于所有平均年龄的员…
最新文章